lunes, 5 de mayo de 2014

Conversión de un Número Binario a Decimal






Asignatura: Computación
Profesor: Eliezer Anaya

Método de Notación Posicional.

1.- Para este ejemplo, vamos a convertir el número binario 100110112 a decimal: Enlista las potencias de dos de derecha a izquierda. Comienza con 20, evaluándolo como “1”. Incremente el exponente de uno en uno para cada potencia. Detente cuando el número de elementos en la lista sea igual al número de dígitos del número binario. El número de ejemplo, 10011011, tiene 8 dígitos, así que la lista, de 8 elementos, se verá así: 128, 64, 32, 16, 8, 4, 2, 1.



2.- Primero escribe el número binario debajo de la lista.



3.- Dibuja líneas, comenzando por la derecha, que conecten cada dígito consecutivo del número binario a la potencia que le sigue: Comienza dibujando una línea desde el primer dígito del número binario a la primera potencia de dos en la lista superior. Luego, dibuja una línea del segundo dígito del número binario a la segunda potencia en la lista. Continúa conectando cada dígito con su potencia correspondiente.



4.- Avanza por cada dígito del número binario: Si el dígito es 1, escribe la potencia correspondiente debajo de la línea, debajo del dígito. Si el dígito es 0, escribe un 0 debajo de la línea, debajo del dígito.



5.- Suma los números debajo de la línea, la suma debe ser 155: Este es el decimal equivalente al número binario 1001011. O, escrito con subíndices.




6.- Repetir este método resultará en la memorización de las potencias de dos, lo que te permitirá saltarte el paso 1.


A continuación les dejo un vídeo donde se muestra con un ejemplo lo explicado.


Si no puede ver el video haz click Aquí



Conversión de un Número Decimal a Binario






Asignatura: Computación
Profesor: Eliezer Anaya


Método División Por Dos Utilizando un Residuo

1.- Escribe el Problema: Para este ejemplo, vamos a convertir el número decimal 15610 a número binario. Escribe el número decimal como el dividendo al interior de un signo de división "largo". Escribe la base del sistema al que quieres convertir (en nuestro caso, "2" para número binario) como el divisor por fuera del signo de división.
NOTA:  - Este método es mucho más fácil de comprender si se visualiza en papel, y también es mucho más fácil de realizar para los principiantes, ya que lo único que hay que hacer es una división por dos.
   - Para evitar la confusión antes y después de la conversión, escribe el número del sistema base con el que vas a trabajar como un subíndice por cada número. En este caso, el número decimal tendrá un subíndice de 10 y el equivalente binario tendrá un subíndice de 2.




2.- Hacer La División: Escribe la respuesta (cociente) debajo del signo de división, y escribe el residuo (0 o 1) a la derecha del dividendo.
NOTA: Ya que estamos dividendo por 2, cuando el dividendo sea un número par, el residuo será 0, y cuando el dividendo sea un número impar el residuo binario será 1.



3.- Continúa dividiendo hasta que el resultado sea 0: Continúa hacia abajo de la hoja, dividiendo cada nuevo cociente por dos y escribiendo el residuo a la derecha de cada dividendo. Detente cuando el cociente sea 0.



4.- Escribe el número binario que obtuviste: Empezando desde el último residuo, lee la secuencia de residuos hacia arriba hasta llegar al primero. En nuestro ejemplo, deberías tener 10011100. Ése es el equivalente binario del número decimal 156. O, escrito con los subíndices de las bases: 15610 = 100111002.

NOTA: Este método puede modificarse para convertir de número decimal a número en cualquier tipo de base. El divisor es 2 porque queríamos convertir a sistema de base 2 (binario). Si quieres trabajar con un sistema de base diferente, reemplaza el 2 en el método anterior con el número del sistema base al que quieres convertir. Por ejemplo, si deseas convertir a sistema octal en base 8, reemplaza el 2 por el 8. El resultado final estará expresado en la base que desees.



Aquí les adjunto un vídeo que explica como realizar el método. 

Si no puede ver el video haz click Aquí




jueves, 24 de abril de 2014

Medidas de Información











Asignatura: Computación
Profesor: Eliezer Anaya


Medidas de Información.


Las medidas de almacenamiento son aquellas unidades de medición que permiten determinar cuánto espacio hay disponible en una unidad de memoria.

-Bit (dígito binario): un bit es la unidad de información más pequeña que el procesador manipula y físicamente se representa con un elemento como un pulso o un punto. Ocho bits constituyen un byte, el byte o unidad de almacenamiento: cuenta con 8 bits. Equivale a un sólo carácter, como una letra o un número.



 -Byte (octeto): es una secuencia de bits contiguos, cuyo tamaño depende del código de información o código de caracteres en que sea definido. Se usa comúnmente como unidad básica de almacenamiento de datos en combinación con los prefijos de cantidad. Originalmente el byte fue elegido para ser un submúltiplo del tamaño de palabra de un ordenador, desde cinco a doce bits.



-Kilobyte: Un Kilobyte (abreviado como KB o Kbyte) en sistemas decimales, kilo significa 1.000, pero el mundo de los ordenadores se basa en un sistema binario de dos en vez de diez. Para distinguir entre una K decimal (1.000) y una K binaria (1.024), el IEEE ha sugerido usar una k minúscula para un kilo decimal y una K mayúscula para un kilo binario.
Así pues, un kilobyte es realmente 1.024 (210) bytes.



-Megabyte: Sirve para medir tamaño de archivos, capacidad de almacenamiento, velocidad de transferencia de datos (al agregarle una unidad de tiempo, generalmente segundos), etc.
Un megabyte equivale exactamente a 1024 KB (kilobytes) o a 1.048.576 bytes.
Un Megabyte, cuando se utiliza para describir el almacenamiento de datos, son 1.048.576 (2 a la vigésima potencia) bytes. El megabyte se abrevia con frecuencia como M o MB.
Un Megabyte, cuando se utiliza para describir tasas de transferencia de datos, como en MBps, se refiere a un millón de Bytes.



-Gigabyte: Un Gigabyte es una unidad de medida aproximadamente igual a 1 billón de bytes. El gigabyte se utiliza para cuantificar memoria o capacidad de disco. Un gigabyte es igual a 1,000MB (realmente 1.024 megabytes).



-Terabyte: Un Terabyte es una unidad de medida de memoria (2 elevado a 40) aproximadamente igual a un trillón de bytes (realmente 1.099.511.627.776 bytes). Un Terabyte es igual a 1.000 gigabytes.



-Petabyte: Un petabyte es una unidad de medida de memoria (2 elevado a 50) que es igual a 1.024 Terabytes (en realidad 1.125.899.906.842.624 bytes). Se utiliza sobre todo en soluciones distribuidas de almacenaje y dentro de soluciones de empresa importantes.


  
-Exabyte: Un exabyte es una unidad de medida de almacenamiento de información cuyo símbolo es el EB, equivale a 1018 bytes.
1000 exabytes equivalen a un zettabyte


  
-Zettabyte: Un zettabyte es una unidad de almacenamiento de información cuyo símbolo es el ZB, equivale a 10 bytes.



-Yottabyte: Un Yottabyte es una unidad de almacenamiento de información cuyo símbolo es el YB, y equivale a 1024 bytes.


  
-Brontobyte: Un Brontobyte es una unidad de medida de almacenamiento equivalente a 1024 Yottabyte o 2 elevado a 90 bytes. Se simboliza BB.



-Geopbyte: Un geopbyte es una unidad de medida en informática y su símbolo es el GeB. Es equivalente a 1024 (210) brontobytes, o 2100 bytes. Su equivalente total en bytes es: 15267 6504600 2283229 4012496 7031205 376 bytes.


Aquí les dejo un vídeo para verificar el como realizar los cálculos

Si no puede ver el video haz click Aquí




martes, 22 de abril de 2014

Sistemas de Numeración








Asignatura: Computación
Profesor: Eliezer Anaya


Sistemas de Numeración

Un sistema de numeración es un conjunto de símbolos y reglas que permi­ten representar datos numéricos. Los sistemas de numeración actuales son sistemas posicionales, que se caracterizan porque un símbo­lo tiene distinto valor según la posición que ocupa en la cifra.
- Sistema de numeración decimal: El sistema de numeración que utiliza­mos habitualmente es el decimal, que se compone de diez símbolos o dígi­tos (0, 1, 2, 3, 4, 5, 6, 7, 8 y 9) a los que otorga un valor dependiendo de la posición que ocupen en la cifra: unidades, decenas, centenas, millares, etc.
El valor de cada dígito está asociado al de una potencia de base 10, número que coincide con la cantidad de símbolos o dígitos del sistema decimal, y un exponente igual a la posición que ocupa el dígito menos uno, contando desde la de­recha.
En el sistema decimal el número 528, por ejemplo, significa:
5 centenas + 2 decenas + 8 unidades, es decir:
5*102 + 2*101 + 8*100 o, lo que es lo mismo:
500 + 20 + 8 = 528
En el caso de números con decimales, la situación es análoga aunque, en este caso, algunos exponentes de las potencias serán negativos, concreta­mente el de los dígitos colocados a la derecha del separador decimal. Por ejemplo, el número 8245,97 se calcularía como:
8 millares + 2 centenas + 4 decenas + 5 unidades + 9 décimos + 7 céntimos
8*103 + 2*102 + 4*101 + 5*100 + 9*10-1 + 7*10-2, es decir:
8000 + 200 + 40 + 5 + 0,9 + 0,07 = 8245,97




- Sistema de numeración binario: El sistema de numeración binario utiliza sólo dos dígitos, el cero (0) y el uno (1).
En una cifra binaria, cada dígito tiene distinto valor dependiendo de la posición que ocupe. El valor de cada posición es el de una potencia de base 2, elevada a un exponente igual a la posición del dígito menos uno. Se puede observar que, tal y como ocurría con el sistema decimal, la base de la potencia coincide con la cantidad de dígitos utilizados (2) para representar los números.
De acuerdo con estas reglas, el número binario 1011 tiene un valor que se calcula así:
1*23 + 0*22 + 1*21 + 1*20 , es decir:
8 + 0 + 2 + 1 = 11
y para expresar que ambas cifras describen la misma cantidad lo escribimos así:
10112 = 1110







domingo, 20 de abril de 2014

Evolución del Computador











Asignatura: Computación
Profesor: Eliezer Anaya


Evolución del Computador

Lo que conocemos hoy como computador, antes fue una máquina analítica hasta que se logró crear un dispositivo totalmente electrónico, que fue el primer computador digital. Luego, con la aparición del circuito integrado el avance tecnológico fue mucho mayor, permitiendo interconectar miles de transistores.
La primera máquina de calcular mecánica, un precursor del computador digital, fue inventada en 1642 por el matemático francés Blaise Pascal. Aquel dispositivo utilizaba una serie de ruedas de diez dientes en las que cada uno de los dientes representaba un dígito del 0 al 9. Las ruedas estaban conectadas de tal manera que podían sumarse números haciéndolas avanzar el número de dientes correcto. En 1670 el filósofo y matemático alemán Gottfried Wilhelm Leibniz perfeccionó esta máquina e inventó una que también podía multiplicar.
El inventor francés Joseph Marie Jacquard, al diseñar un telar automático, utilizó delgadas placas de madera perforadas para controlar el tejido utilizado en los diseños complejos. Durante la década de 1880 el estadístico estadounidense Herman Hollerith concibió la idea de utilizar tarjetas perforadas, similares a las placas de Jacquard, para procesar datos. Hollerith consiguió compilar la información estadística destinada al censo de población de 1890 de Estados Unidos mediante la utilización de un sistema que hacía pasar tarjetas perforadas sobre contactos eléctricos.

  Evolución Electrónica.

En 1904, el inglés Fleming inventó la válvula de vacío, que se utilizó como elemento de control para sustituir a los relés electromecánicos y para conformar dispositivos bi-estables.

En los años cincuenta, con el descubrimiento de los semiconductores, aparecieron el diodo y el transistor, este último inventado por Walter Brattain, jhon Barden y W.Shockley en los laboratorios BELL en enero de 1947, por este descubrimiento obtuvieron el premio Nobel. El transistor sustituyó a la válvula de vacío permitiendo la reducción de circuitos de tamaño y aumentando la fiabilidad de los equipos debido a sus mejores características.

Basándose en el transistor, se construyeron circuitos capaces de realizar funciones lógicas, con lo que surgieron las puertas lógicas y sus circuitos derivados. Años más tarde, comenzó la miniaturización con la construcción de los circuitos integrados, que consistían en la implementación de un circuito complejo en una pastilla que ocupaba un tamaño reducido. Con este elemento empezó la ciencia del diseño lógico de circuitos a baja escala de integración (SSI, Short Scale Integration), que permitía introducir en cada circuito alrededor de diez puertas lógicas.

Apareció a continuación la integración a media escala MSI (Médium Scale Integration), en la que se integraban en una sola pastilla de circuito integrado entre 100 y 1000 puertas lógicas.
Poco tiempo después, se consiguió introducir en un mismo circuito entre 1000 y 10000 puertas lógicas, con lo que se pasó a la integración a gran escala (LSI, Long Scale Integration).
Cuando se superaron las 10000 puertas lógicas por circuito se pasó a la muy alta escala de integración (VLSI, Very Long Scale Integration).

En 1971 apareció un circuito integrado denominado microprocesador, en el que se consiguió introducir todo el procesador de una computadora en un solo elemento.

Generación de Computadores. 

Hasta el presente, se han sucedido 4 generaciones de duración variable, que se han desembocado en la 5ta generación en la que nos encontramos inmersos en la actualidad. Cada generación se caracteriza por el uso de elementos distintivos de hardware, como la válvula, el transistor, el circuito integrado micronimiaturizado, respectivamente. Este es el ámbito temporal y las características de cada generación:

- 1ra generación: tubo de vacío (1951-1958)

- 2da generación: transistor (1959-1964)

- 3ra generación: circuito integrado (1965-1970)

- 4ta generación: microprocesador (1971-1981)

- 5ta generación: inteligencia artificial (1982-?)

El criterio diferenciador de cada generación es siempre un componente de hardware. En las primeras generaciones se trata de componentes de los circuitos y en las otras de tipos de circuitos.

La 5ta generación de computadoras, todavía en desarrollo, esta formada por maquinas relacionadas con la llamada inteligencia artificial (IA). Se trata de computadoras dotadas de "inteligencia" implementada en su sistema físico (hardware).

Las maquinas de la 5ta generación se basan en cuatro elementos fundamentales:

a) Un modulo de resolución de problemas.
b) Un dispositivo de gestión de las bases de conocimiento (es decir, el sistema que acumula los conocimientos de los especialistas humanos en la materia y en el cual la información esta representando mediante reglas de producción o redes semánticas).
c) Un interfase de lenguaje natural (por ejemplo el castellano, que es el que permitirá la interacción entre el sistema y el usuario).
d) Un modulo de programación.

LA PRIMERA GENERACIÓN (1951 - 1958).
 
Las computadoras de la primera Generación emplearon bulbos para procesar información. Los operadores ingresaban los datos y programas en código especial por medio de tarjetas perforadas.

El almacenamiento interno se lograba con un tambor que giraba rápidamente, sobre el cual un dispositivo de lectura/escritura colocaba marcas magnéticas. Estas computadoras estaban constituidas por tubos de vacío, desprendían bastante calor y tenían una vida relativamente corta, eran grandes y pesadas. Generaban un alto consumo de energía, el voltaje de los tubos era de 300 V y la posibilidad de fundirse era grande.


Eckert y Mauchly contribuyeron al desarrollo de computadoras de la primera generación formando una compañía privada y construyendo UNIVAC I, la cual se utilizó para evaluar el censo de 1950. La IBM tenía el monopolio de los equipos de procesamiento de datos a base de tarjetas perforadas, sin embargo no había logrado el contrato para el Censo de 1950.
Comenzó entonces a construir computadoras electrónicas y su primera entrada fue con la IBM 701 en 1953. Después de un lento pero excitante comienzo la IBM 701 se convirtió en un producto comercialmente viable. Sin embargo en 1954 fue introducido el modelo IBM 650, el cual es la razón por la que IBM disfruta hoy de una gran parte del mercado de las computadoras. La administración de la IBM asumió un gran riesgo y estimó una venta de 50 computadoras. Este número era mayor que la cantidad de computadoras instaladas en esa época en EE.UU. 


De hecho la IBM instaló 1000 computadoras. Aunque caras y de uso limitado las computadoras fueron aceptadas rápidamente por las Compañías Privadas y de Gobierno. A la mitad de los años 50 IBM y Remington Rand se consolidaban como líderes en la fabricación de computadoras.


LA SEGUNDA GENERACIÓN (1959 - 1964).

El invento del transistor hizo posible una nueva Generación de computadoras, más rápidas, más pequeñas y con menores necesidades de ventilación. Sin embargo el costo seguía siendo una porción significativa del presupuesto de una Compañía. Las computadoras de la segunda generación también utilizaban redes de núcleos magnéticos en lugar de tambores giratorios para el almacenamiento primario. Estos núcleos contenían pequeños anillos de material magnético, enlazados entre sí, en los cuales podían almacenarse datos e instrucciones.

Los programas de computadoras también mejoraron. El COBOL (COmmon Busines Oriented Languaje) desarrollado durante la 1era generación estaba ya disponible comercialmente, este representa uno de os mas grandes avances en cuanto a portabilidad de programas entre diferentes computadoras; es decir, es uno de los primeros programas que se pueden ejecutar en diversos equipos de computo después de un sencillo procesamiento de compilación. Los programas escritos para una computadora podían transferirse a otra con un mínimo esfuerzo. Grace Murria Hooper (1906-1992), quien en 1952 había inventado el primer compilador fue una de las principales figuras de CODASYL (Comité on Data SYstems Languages), que se encargó de desarrollar el proyecto COBOL.
El escribir un programa ya no requería entender plenamente el hardware de la computación. Las computadoras de la 2da Generación eran sustancialmente más pequeñas y rápidas que las de bulbos, y se usaban para nuevas aplicaciones, como en los sistemas para reservación en líneas aéreas, control de tráfico aéreo y simulaciones para uso general.
Las empresas comenzaron a aplicar las computadoras a tareas de almacenamiento de registros, como manejo de inventarios, nómina y contabilidad.
 La marina de E.U. utilizó las computadoras de la Segunda Generación para crear el primer simulador de vuelo. (Whirlwind I). HoneyWell se colocó como el primer competidor durante la segunda generación de computadoras. Burroughs, Univac, NCR, CDC, HoneyWell, los más grandes competidores de IBM durante los 60s se conocieron como el grupo BUNCH.

Algunas de las computadoras que se construyeron ya con transistores fueron la IBM 1401, las Honeywell 800 y su serie 5000, UNIVAC M460, las IBM 7090 y 7094, NCR 315, las RCA 501 y 601, Control Data Corporation con su conocido modelo CDC16O4, y muchas otras, que constituían un mercado de gran competencia, en rápido crecimiento. En esta generación se construyen las supercomputadoras Remington Rand UNIVAC LARC, e IBM Stretch (1961).


 
 
LA TERCERA GENERACIÓN (1964 - 1971).

Las computadoras de la tercera generación emergieron con el desarrollo de los circuitos integrados, en las cuales se colocan miles de componentes electrónicos, en una integración en miniatura. Las computadoras nuevamente se hicieron más pequeñas, más rápidas, desprendían menos calor y eran energéticamente más eficientes. El descubrimiento en 1958 del primer Circuito Integrado (chip) por el ingeniero Jack S. Kilbry de Texas Instruments, así como los trabajos que realizaba, por su parte, el Dr. Robert Noyce de Fairchild Semiconductors, acerca de los circuitos integrados, dieron origen a la tercera generación de computadoras. Antes de la llegada de los circuitos integrados, las computadoras estaban diseñadas para aplicaciones matemáticas o de negocios, pero no para las dos cosas.

Los circuitos integrados permitieron a los fabricantes de computadoras incrementar la flexibilidad de los programas, y estandarizar sus modelos. Se instalan terminales remotas, que puedan acceder a la computadora central para realizar operaciones, extraer o introducir información en Bancos de Datos, etc. Aumenta la capacidad de almacenamiento y se reduce el tiempo de respuesta. Se generalizan los lenguajes de programación de alto nivel.

IBM marca el inicio de esta generación, cuando el 7 de abril de 1964 presenta la impresionante IBM 360, con su tecnología SLT (Solid Logic Technology), fue una de las primeras computadoras comerciales que usó circuitos integrados, podía realizar tanto análisis numéricos como administración ó procesamiento de archivos. Esta máquina causó tal impacto en el mundo de la computación que se fabricaron más de 30000.

Se empiezan a utilizar los medios magnéticos de almacenamiento, como cintas magnéticas de 9 canales, enormes discos rígidos, etc. Algunos sistemas todavía usan las tarjetas perforadas para la entrada de datos, pero los lectores de tarjetas ya alcanzan velocidades respetables.

Las computadoras trabajaban a tal velocidad que proporcionaban la capacidad de correr más de un programa de manera simultánea (multiprogramación). Por ejemplo la computadora podía estar calculando la nomina y aceptando pedidos al mismo tiempo.

Con la introducción del modelo 360, IBM acaparó el 70% del mercado, para evitar competir directamente con IBM la empresa Digital Equipment Corporation redirigió sus esfuerzos hacia computadoras pequeñas. Mucho menos costosas de comprar y de operar que las computadoras grandes, las minicomputadoras se desarrollaron durante la segunda generación pero alcanzaron un gran auge entre 1960 y 1970.



Monografias.com

LA CUARTA GENERACIÓN (1971 - 1982).

Dos mejoras en la tecnología de las computadoras marcan el inicio de la cuarta generación: el reemplazo de las memorias con núcleos magnéticos, por las de chips de silicio y la colocación de muchos más componentes en un chip, producto de la micro-miniaturización de los circuitos electrónicos. El tamaño reducido del microprocesador y de chips hizo posible la creación de las computadoras personales.

En 1971, Intel Corporation, que era una pequeña compañía fabricante de semiconductores ubicada en Silicon Valley, presenta el primer microprocesador o chip de 4 bits, que en un espacio de aproximadamente 4x5 mm contenía 2250 transistores. Este primer microprocesador fue bautizado como el 4004.

Esta generación de computadoras se caracterizó por grandes avances tecnológicos realizados en un tiempo muy corto. En 1977 aparecen las primeras micro-computadoras, entre las cuales, las más famosas fueron las fabricadas por Apple Computer, Radio Shack y Commodore Busíness Machines. IBM se integra al mercado de las microcomputadoras con su Personal Computer, asimismo se incluye un sistema operativo estandarizado, el MS-DOS (MicroSoft Disk Operating System).

Las principales tecnologías que dominan este mercado son: IBM y sus compatibles llamadas clones, fabricadas por infinidad de compañías con base en los procesadores 8088, 8086, 80286, 80386, 80486, 80586 o Pentium, Pentium II, Pentium III y Celeron de Intel y en segundo término Apple Computer, con sus Macintosh y las Power Macintosh, que tienen gran capacidad de generación de gráficos y sonidos gracias a sus poderosos procesadores Motorola serie 68000 y PowerPC, respectivamente. Este último microprocesador ha sido fabricado utilizando la tecnología RISC (Reduced Instruction Set Computing), por Apple Computer Inc., Motorola Inc. e IBM Corporation, conjuntamente.

Los sistemas operativos han alcanzado un notable desarrollo, sobre todo por la posibilidad de generar gráficos a grandes velocidades, lo cual permite utilizar las interfaces gráficas de usuario (Graphic User Interface, GUI), que son pantallas con ventanas, iconos (figuras) y menús desplegables que facilitan las tareas de comunicación entre el usuario y la computadora, tales como la selección de comandos del sistema operativo para realizar operaciones de copiado o formato con una simple pulsación de cualquier botón del ratón sobre uno de los iconos o menús.


Monografias.com

LA QUINTA GENERACIÓN (1982 - Actualidad).

Siguiendo la pista a los acontecimientos tecnológicos en materia de computación e informática, podemos señalar algunas fechas y características de lo que es la quinta generación de computadoras. Con base en los grandes acontecimientos tecnológicos en materia de microelectrónica y computación, se dice que en la década de los ochenta se establecieron los cimientos de lo que se puede conocer como la quinta generación de computadoras.

Hay que mencionar uno de los importantes avances tecnológicos: la creación en 1982 de la primera supercomputadora con capacidad de proceso paralelo, diseñada por Seymouy Cray, quien ya experimentaba desde 1968 con supercomputadoras, y que funda en 1976 la Cray Research Inc.

El proceso paralelo es aquél que se lleva a cabo en computadoras que tienen la capacidad de trabajar simultáneamente con varios microprocesadores, aunque en teoría el trabajo con varios microprocesadores debería ser mucho más rápido, es necesario llevar a cabo una programación especial que permita asignar diferentes tareas de un mismo proceso a los diversos microprocesadores que intervienen. También se debe adecuar la memoria para que pueda atender los requerimientos de los procesadores al mismo tiempo. Para solucionar este problema se tuvieron que diseñar módulos de memoria compartida capaces de asignar áreas de caché para cada procesador.

Las computadoras de esta generación contienen una gran cantidad de microprocesadores trabajando en paralelo y pueden reconocer voz e imágenes, también tienen la capacidad de comunicarse con un lenguaje natural. El almacenamiento de información se realiza en dispositivos magneto-ópticos con capacidades de decenas de gigabytes; se establece el DVD (Digital Video Disk o Digital Versatile Disk) como estándar para el almacenamiento de video y sonido; la capacidad de almacenamiento de datos crece de manera exponencial posibilitando guardar más información en una de estas unidades, que toda la que había en la Biblioteca de Alejandría.

Uno de los pronósticos que se han venido realizando sin interrupciones en el transcurso de esta generación, es la conectividad entre computadoras, que a partir de 1994, con la llegada de la red Internet y del World Wide Web, ha adquirido una importancia vital en las grandes, medianas y pequeñas empresas y, entre los usuarios particulares de computadoras.



Monografias.com


LA SEXTA GENERACIÓN (Futuro).

Cada vez se hace mucho más difícil la identificación de las generaciones de las computadoras, porque los grandes avances y nuevos descubrimientos ya no nos sorprenden como sucedió a mediados del siglo XX. Hay quienes consideran que la quinta generación ha terminado (la ubican entre los años 1984 a 1990) y que la sexta generación está en desarrollo desde los años noventa hasta la actualidad; por otro lado, expertos en la informática y la computación afirman que la quinta generación no ha culminado (se viene desarrollando desde los años ochenta hasta la actualidad) y que la sexta generación es el futuro (la relacionan con la robótica y la inteligencia artificial).

Guiándonos en base a lo investigado y en nuestros propios conocimientos, consideramos que la sexta generación es el futuro y parte de la actualidad.

En esta generación se espera llegar a los Sistemas Expertos (imitar el comportamiento de un profesional humano), para esto se emplearán microcircuitos con inteligencia, en donde las computadoras tendrán la capacidad de aprender, asociar, deducir y tomar decisiones para la resolución de un problema, la famosa "Generación de la Inteligencia Artificial".

El propósito de la Inteligencia Artificial es equipar a las computadoras con inteligencia humana y con la capacidad de razonar para encontrar soluciones. Otro factor fundamental del diseño, la capacidad de la computadora para reconocer patrones y secuencias de procesamiento que haya encontrado previamente, (programación Heurística) que permita a la computadora recordar resultados previos e incluirlos en el procesamiento, en esencia, la computadora aprenderá a partir de sus propias experiencias usará sus datos originales para obtener la respuesta por medio del razonamiento y conservará esos resultados para posteriores tareas de procesamiento y toma de decisiones. El conocimiento recién adquirido le servirá como base para la próxima serie de soluciones.


Monografias.com